L’information brevet au service de l’industrie pétrolière: Cas de conception et optimisation des trépans par ingénierie inversée

Abdelkader Baaziz, Luc Quoniam, Abdenacer Khoudi

Abstract


Le but de cet article est de montrer les résultats d’une étude réalisée initialement pour le compte d'une Entreprise Publique Algérienne ENSP (Direction Fabrication / ex-ALDIM), spécialisée dans la fabrication des outils de forage, afin d'évaluer les opportunités d'innovation offertes par l'utilisation du reverse engineering assisté par l’information brevet dans l'industrie pétrolière. Cette recherche appliquée, basée principalement sur l’information utile et actionnable, est couronnée par la mise en place d’un processus dynamique et évolutif de fabrication des outils de forage qui s’appuie sur un processus d’apprentissage continu par la pratique. Nous mettrons en perspective le processus cognitif permettant la capitalisation des connaissances lors du processus technique du reverse engineering ainsi que la contribution de l’information brevet dans le suivi des évolutions technologiques dans le domaine de conception et de fabrication des trépans ainsi que l’identification des technologies porteuses de valeur. Nous terminerons par des résultats concrets, en exposant les performances obtenues par un outil de forage fabriqué par l’ENSP (ex-ALDIM) selon le processus décrit dans cet article, lors du forage d’un puits de pétrole dans la région de Hassi Berkine (Algérie).

Keywords


Drill bit; Trépan; Outil de forage; oilfield drilling; forage pétrolier; information; patent; brevet; reverse engineering; ingénierie inversée

References


BAGCI, E. (2009), “Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: Three case studies”, Advances in Engineering Software, 40(6), pp. 407–418. doi:10.1016/j.advengsoft.2008.07.003

BORYCZKO P. (2012), “Drill bit selection and optimization in exploration well 6507/6-4A in the Nordland Ridge Area”, Master Thesis in Petroleum Engineering / Drilling, University of Stavenger - Faculty of Science and Technology, 2012.

BRATLI R.K., HARELAND G., STENE F., DUNSÆD G. W. & GJELSTAD G. (1997), “Drilling Optimization Software Verified in the North Sea”, Paper SPE 39007 presented at SPE LACPEC Conference in Rio De Janeiro, Brazil, August 30 - Sept. 2, 1997.

CHIVATE, P. N., & JABLOKOW, A. G. (1995), “Review of surface representations and fitting for reverse engineering”, Computer Integrated Manufacturing Systems, 8(3), pp. 193–204.

DE TOLEDO, R., LEVY, B., & PAUL, J.-C. (2008), “Reverse engineering for industrial-plant cad models”, TMCE, Tools and Methods for Competitive Engineering, pp. 1021–1034.

DURUPT A., REMY R., DUCELLIER G. & EYNARD B. (2008), “From a 3D point cloud to an engineering CAD model: A knowledge product based approach for reverse engineering”, Virtual and Physical Prototyping, 3, pp. 51–59.

DURUPT A., REMY R. & DUCELLIER G. (2010a), “KBRE: A Knowledge Based Reverse Engineering for Mechanical Components”, Computer-Aided Design & Applications, 7(2), 2010, pp. 279–289, doi:10.3722/cadaps.

DURUPT A., REMY R. & DUCELLIER G. (2010b), “Knowledge Based Reverse Engineering – An Approach for Reverse Engineering of a Mechanical Part”, Journal of Computing and Information Science in Engineering, 10(4), 044501, doi:10.1115/1.3482059

EGGERT David W., FITZGIBBON Andrew W., FISHER Robert B. (1998), “Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models”, Computer Vision and Image Understanding, 69(3), 1998, pp. 253-272.

EGGERT David W., FITZGIBBON Andrew W., FISHER Robert B. (1996), “Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models”, ICPR, 1996, pp. 243-247.

FISHER, R. B. (2004), “Applying knowledge to reverse engineering problems”, Computer Aided Design, 36, 2004, pp. 501-510.

FUDOS I. (2006), “CAD/CAM Methods for Reverse Engineering: A Case Study of Re-engineering Jewelry”, University of Ioannina, Computer-Aided Design & Applications, 3(6), pp 683–700.

GAO, C. H., LANGBEIN, F. C., MARSHALL, A. D., & MARTIN, R. R. (2003), “Approximate congruence detection of model features for reverse engineering”, In Shape Modeling International, 2003, pp. 69–77, IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1199603 (August 22, 2014)

JIN, Zhouying (2005), “Global Technological Change: From Hard Technology to Soft Technology”, Intellect (UK), January 2005 – ISBN 1841501247

LANGBEIN, F. C., MARSHALL, A. D., & MARTIN, R. R. (2002), “Numerical methods for beautification of reverse engineered geometric models”, In Geometric Modeling and Processing, 2002, pp. 159–168, IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1027507 (August 22, 2014)

LANGBEIN F. C. (2003), “Beautification of Reverse Engineered Geometric Models”, PhD Thesis, Cardiff University - Department of Computer Science, June 2003

LANGBEIN, F. C., MARSHALL, A. D., & MARTIN, R. R. (2004), “Choosing consistent constraints for beautification of reverse engineered geometric models”, Computer-Aided Design, 36(3), pp. 261–278.

MENAND S. (2010), « 2000-2010 : Principales évolutions et avancées technologiques en forage », Pétrole & Gaz Informations, MINES ParisTech, 1806 (2010), pp. 38–41.

MOTAVALLI, S. (1998), “Review of reverse engineering approaches”, Computers & Industrial Engineering, 35(1), pp. 25–28.

NPD-BOK, “A Methodology for Reverse Engineering”, NEW PRODUCT DEVELOPMENT - BODY OF KNOWLEDGE, [Online] Available: http://www.npd-solutions.com/bok.html (October 18, 2013)

VARUDY T., MARTIN R. R. & COX J. (1997), “Special issue: reverse engineering of geometric models”, Computer-Aided Design, 29(4), pp. 253–254.

VARUDY T., MARTIN R. R. & COX J. (1997), “Reverse engineering of geometric models. An introduction”. Computer-Aided Design, 29(4), pp. 255–268.

PETITJEAN S. (2002), “A survey of methods for recovering quadrics in triangle meshes”, ACM Comput. Surv., 34(2), pp. 211–262.

QUONIAM L. (2013), « Brevets comme outil d’innovation, de créativité et de transfert technologique dans les pays en voie de développement », Journée Scientifiques et Techniques de Sonatrach (JST’9), Centre des Conventions d’Oran, Algérie, 08 avril 2013

THOMPSON, W. B., OWEN, J. C., DE ST GERMAIN, H. J., STARK Jr, S. R., & HENDERSON, T. C. (1999), “Feature-based reverse engineering of mechanical parts”, Robotics and Automation, IEEE Transactions on, 15(1), pp. 57–66.

WINKELBACH, S., MOLKENSTRUCK, S., & WAHL, F. M. (2006), “Low-cost laser range scanner and fast surface registration approach”, In Pattern Recognition, pp. 718–728, Springer, Retrieved from http://link.springer.com/chapter/10.1007/11861898_72

Wikipedia, “Reverse engineering”. [Online] Available: http://en.wikipedia.org/wiki/Reverse_engineering (October 18, 2013)

WIPO GOLD (2013), Ressource de l’OMPI, [Online] Available : http://www.wipo.int/wipogold/fr/ (August 22, 2014)

ZHANG, Y. (2003), “Research into the engineering application of reverse engineering technology”, Journal of Materials Processing Technology, 139(1-3), pp. 472–475, doi:10.1016/S0924-0136(03)00513-2




Licensed under